Algorand Consensus Incentivisation

AN ALGORAND FOUNDATION DISCUSSION PAPER

John Woods Michele Treccani John Jannotti
john@algorand.foundation michele@algorand.foundation jjGalgorand.com

john@postquantum.dev

Naveed Thsanullah
naveed@algorand.foundation

naveed@jamsni.com

Version 1.0, 14th December 2023

1 Purpose

The goal of this project is to engineer a native solution at layer 1, modifying the Algorand proto-
col to incentivise the execution of consensus via block production rewards in Algo, Algorand’s

native token.

The technical goals of this project are:

1.

Define the economic aspects of the design (source of funds, payout function, non-functional

requirements).

Define the technical design (protocol level augmentations, code-level changes, functional

requirements).

Define the approach to mitigate gamification (“Key surrender”, ” Absenteeism”, “Vote

neglect”).

Contents

1 Purpose 1
2 Acknowledgements 3
3 Context 4
4 Solution design 5
41 Incentivesfrom Fees o 5
4.2 Economic considerations e e 5
43 Payoutfunction 6
44 FrequUeNnCy e 7
45 Game mitigations/Anti-fragility 0. 8
451 Absenteeism e e 8

452 Pooling e 10

453 Modified Clients e e 11

4.6 Fees e e e 12
5 Conclusion 13

2 Acknowledgements

The ideas presented herein are inspired by and based on discussions with individuals from
Algorand Foundation & Algorand Technologies (previously Inc), including the research and
engineering groups, specifically: Silvio Micali, Paul Riegle, Gary Malouf, Eric Wragge, & Bruno
Martins.

3 Context

Algorand employs Pure Proof of Stake (glossary below) as a means of reaching consensus. The
security of the decentralised network is predicated on the total count of Algo tokens which are
actively staked at any given moment, as a percentage of the total circulating supply. Notably,
Algorand’s liveness relies upon at least ~80% of the participating (“online”) stake to actively
and honestly take part in the consensus protocol in order to produce blocks.

Algorand’s original thesis contended, a priori, that a sufficient number of end-users would
naturally be incentivised to run a node and contribute to online stake, motivated by the desire
to secure their own funds, and as a corollary the network. However, a posteriori, it has been
observed that as a consequence of the cost to run a participation node with high uptime, and
indeed the technical expertise required to both instantiate and maintain a node, a critical mass
of end-user contribution has not been reached.

In fact, as the distribution of Algo across accounts has become more uniform, and a larger
proportion of the supply has become held by an increasingly less concentrated set of individuals,
online stake has notably dropped. The aforementioned friction is seemingly too much for most
individuals to contribute actively to network security.

This paper proposes a potential solution, at a protocol level, to encourage end-users to
actively participate with their Algo. Additionally, we introduce the concept of incentives to
reward participation, with the aim of materially increasing the total percentage of Algo in
circulating supply which is participating in consensus.

4 Solution design

Here we outline the technical solution design for payment of consensus incentives, dynamically
by the protocol, without manual intervention or processes.

4.1 Incentives from Fees

Henceforth, we use the term “mined incentives” to refer to the proportion of incentives yielded
from the act of proposing a block which are directly attributable to Fees. As of 2023, the global
Fee volume is unsubstantive. That said, we should introduce this mechanism now as any
sustainable approach to consensus incentivisation will necessitate the consumption of Fees to
pay block proposers.

The mining mechanism must be built into the L1 protocol, as it diverts funds from the global
Fee Sink. The following technical approach should be sufficient to correctly pay out mined
incentives.

1. When proto.EnableMining, add Proposer and FeesCollected fields to the block header.

2. Determine proto.MiningPercent which is the percentage of Algo paid in Fees that should
go to the proposer of the block instead of the Fee Sink.

3. At the start of block n+1, move MiningPercent * block[n].FeesCollected from the Fee
Sink to block [n] .Proposer.

4. Outlaw spending from the Fee Sink to ensure the funds above are available in block n+1.

The movement is executed at the start of a given block n+1 instead of during block n because
a multi-participant node builds a block before it knows which of its accounts might actually be
the proposer. Between blocks, the funds remain in the Fee Sink.

4.2 Economic considerations

In addition to the incentives generated by the Fee market, in the short to medium term additional
funds will be required to ensure incentives are substantive whilst the network’s transaction
volume increases. Thus, the Algorand Foundation will contribute an additional sum of Algo to
supplement the incentives generated by Fees.

To the end user, the Block-Reward paid to the proposers account will be congruent; that is, the
portion of the reward which represents the AF contribution, and the portion of the reward which
represents the Fee contribution will seamlessly combine.

4.3 Payout function

The supplemental incentives described above will payout following a time-dependent function,
where the emission implies deflation. When supplemental incentives are exhausted, Fees scaled
by proto.MiningPercent will become the sole payout per block. Here, we explore potential
payout functions.

Consider the following two emission function definitions:

Defined below is a linear reward function, which at a given point in time (defined by round
number 7) evaluates to a Block-Reward in Algo:

First we define the emission shape, with a linear decrease:

R(p) = (1= 1)
then, adding a normalisation factor:

¥ B NN +1)
K—};R(’?)—(N’—M)

> the payout function is defined as:

1

R(n) = M x R(n) x T

Where:

M : Total units for incentive (e.g., 200 million Algo).

B : Block-time (e.g., 3 seconds).

T : Total duration for the payout, expressed in seconds (e.g., 3 years).
N : Total number of blocks over the payout period = ;

Whilst a linear payout is reasonable, we could also consider a function with a configurable ex-
ponential decay (also defined by round number), which may be more fitting given Algorand’s
existing capped, inherently deflationary supply:

First we define the emission shape, with an exponential decrease:

17

R'(y) =e ¥
then, adding a normalisation factor:
N _
1—ef
K= Z Rl(ﬂ) = iy
n=1 1—e N
> the payout function is defined as:
Ri() = M x ek L
K

Where:

p : Rate of decay.

Here, the shape of the curve would depend on the value of p: the lower the value of p the
more elongated the curve.

Note: With the development of "Dynamic A” (essentially dynamic round-times, where the time-
to-wait for the lowest VRF proposal is dynamically calculated, and optimised to ignore some slowest
percentile of proposers), it is likely prudent to consider a mechanism to temporally tweak the payout
functions proposed above, as with dynamic round-times, n will no longer provide a linear approximation
of time. As such, we may consider assuming an aggregate block-time for B. Such an assumption can then
be adjusted if significant deviation from our expected T occurs.

44 Frequency

The payout function for the Block-Rewards will execute on a periodic basis. The payout will
occur every 1 block(s). At the time of writing the average block time is 3.3 seconds, and the
expected payout is per round/block.

4.5 Game mitigations/Anti-fragility

Below we describe the primary attack vectors and game-theory aspects as they pertain to the
proposed implementation above.

4.5.1 Absenteeism

Concern:

Absenteeism refers to stakeholders registering their Algorand account online, but subsequently
failing to participate in protocol operations (such as proposing and validating blocks). If a
sufficient percentage of active stake declares itself online but does not do the work to participate
in the consensus protocol the blockchain will stall. Recovery from this stall requires that the
derelict stake eventually participates or a network hard-fork is executed to bypass the defaulting
Algo from being considered.

Mitigation:
We propose a novel solution to Absenteeism which essentially empowers the network to suspend
delinquent participants/ accounts from the staking set. Where that participant/account has
failed to execute their incumbent responsibilities. As part of this solution we will introduce a new
transaction type which will supplement the standard Key Registration Transaction transaction
mechanism with a new type dedicated to “re-enrollment” of an account in the staking set should
it have been suspended from said staking set by the network mistakenly.

This will ensure false positives have a mechanism by which they can re-engage in consensus
without downtime. Note: this solution operates at a consensus level.

The approach is as follows:

* Consider one’s stake always represents some X% of)V, one’s proportion of the global
stake.

* One’s stake will imply a probability distribution across the staking set, defining a threshold
with regard to the probable number of successful block proposals per account, a quantita-
tive threshold which can be used to assess the likelihood of an individual acting in the
best interest of the network.

e If an account falls foul of this threshold, the network will suspend the participant from the
staking set, for example where an account’s count of successful proposals is significantly
below the statistically implied threshold.

¢ There is of course a possibility that an individual was just “unlucky’ rather than inactive.
In such circumstances their node can trivially post a re-enrollment transaction which is,
critically, signed by the node’s Participation Key, not their Spending Key.

* Thus, the network can suspend misbehaving entities, including those who may not be bad
actors but whose stake is unreliable and detrimental to the network, whilst simultaneously
providing a mechanism for entities who were incorrectly suspended to reassert their
commitment to the network and continue to earn rewards.

* To avoid suspension in cases where an account may simply receive a large portion of Algo
which skews their implied threshold, a constant grace period will be observed prior to
suspension to allow accounts to proactively respond, prior to any action being applied.

¢ This approach will utilise Participation Keys, and not Spending Keys. The process will
also not require additional Key Registration Transaction transactions.

* This approach effectively provides “Garbage Collection” for consensus, permitting rel-
atively significant portions of global stake (5% to 10%), within a reasonable rolling time
period, to ungracefully exit consensus ad-infinitum without detriment to the network.

¢ As an additional check of liveness, nodes could be requested to ack in response to chal-
lenges based on Blockseeds, (which are notably unpredictable and impossible to influence).
This approach would permit a targeted percentage subset of the active staking set to be
“assessed”, asserting their liveness, and suspended where an ack is not provided. This
mechanism could be executed every Z rounds, with the set of participants based on some
deterministic slice of the Blockseed, for example by comparing each staker’s address
with some B byte portion of the Blockseed. The challenge would also be predicated on
Blockseed, and be trivially computable.

* In order to discourage unreliable consensus execution, when an account is suspended
it should incur a small but substantive expense in order to return to online status. We
may want to bound this cost with an integer limit value in the initial Key Registration
Transaction, controlling the number of times an account can reassert. This bound allows
a security conscious participant to be sure that their Participation Key cannot be used to
”drain” their account.

Finally, minimum and maximum staking notionals may be enforced in order for an account
to receive a Block-Reward.

A minimum, for example, 8,192 Algo, 16,384 Algo, 32,768 Algo, would serve two purposes,
first, it would set a hard upper bound on the total number of incentive-eligible participating
nodes. This bound makes it practical to track all participating accounts in active memory,
which is required to ensure absenteeism checks are time bound, second it would likely deter
intermittent node operations by “nano” accounts.

A staking ceiling encourages large accounts to split their stake across multiple accounts,
which, where split across multiple nodes, adds stall resilience to the network’s consensus. Such
a limit would likely be between 2% and 227 Algo.

4.5.2 Pooling

Concern:

The liveness of the Algorand protocol requires that ~80% of the participating stake is held by
honest participants. While participation in Algorand’s consensus algorithm is neither computa-
tionally burdensome nor operationally complex in an absolute sense, it may still prove to be
beyond the technical capability of the average Algorand user, who may not be familiar with
managing computer systems. These participants may be likely to pool their Algo with a node
operator who promises to participate on their behalf and return their rewards for an operational
fee. Today this is possible without risking the Algo owner’s principal because participation
activity involves a secondary Participation Key, associated with, but not controlling spend from
the payment account. If users choose to delegate their Participation Key to a pooling service,
this may concentrate stake with a single entity, posing a risk to network safety through potential
accidents or malicious actions, where, as outlined in the section above on Absenteeism, 4.5.1 a
stall could occur.

This scenario cannot be meaningfully mitigated by limiting the maximum participation from
a particular account, node or IP address as a Sybil-attack will trivially bypass such protections.

Mitigation:

Some high-level mitigations and anti-fragility measures have already been baked into the pro-
tocol. For example, if a Participation Key expires without re-registration, the network will
gracefully remove the participant from the staking set. Additionally, the Foundation will work
directly with potential operators to provide education and set operational best practice, includ-
ing providing play-books.

Properly run pools may be beneficial to the network, where appropriate volumes of stake
are separated over participation nodes which are professionally run and exhibit high-availability.
Finally, an over-abundance of online accounts on a given participation node is naturally dis-
couraged, running a participation node with more than ~3 accounts present will result in a
degradated performance during execution of consensus, notably resulting in lost rewards.

10

4.5.3 Modified Clients

Concern:

A strategy to earn consensus rewards whilst also minimizing the network and computational
resources required whilst participating, is to participate through a bespoke, modified, Algorand
node. The official Algorand node implementation maintains substantial local state reflecting
the current balance tree of the Algorand blockchain. This reference implementation is usually
executed on medium-end hardware to ensure that the responsibility of consensus execution
(such as block proposal from current queued transactions and proposal verification based on
current balances) can be completed in the smallest quanta of time. Network and computational
resources may also be required for the message passing and algorithmic processing required.
Thus, a sophisticated attacker may consider building a customised node implementation which
avoids the primary resource intensive activities such as keeping in parity with other node’s
blockchains, proposing empty blocks or falsely validating proposed blocks without actually
checking the payload - or equivalent shortcuts.

Mitigation:

Whilst we thought it prudent to consider the potential advantages from such an approach,
there does not appear to be a meaningful benefit with this strategy. The computational burden
from execution of the VRF and validation of contracts is negligible. The benefit derived from
developing and executing such a customised node is not commensurate with the effort required
to undertake such a strategy, in a Pure Proof of Stake context, it simply doesn’t yield a material
advantage.

11

4.6 Fees

As described above in 4.2, serious consideration must be given to the Fee dynamics in the short
to medium term. Whilst we absolutely need to ensure Algorand stays inexpensive to use, we
must also balance this with the need to secure the network in perpetuity. This may imply a Fee
market, Fee increase or both. Notwithstanding, Algorand’s vision remains unchanged. A vision
which precludes a costly fee model.

12

5 Conclusion

We believe that incentivised consensus represents the right next step for the protocol. This
design should yield a more decentralised and secure network, and critically, one which is secure
in perpetuity, even in the context of a highly uniform token distribution.

The implementation of the changes discussed herein is a work in progress, the following
PRs track that work:

* PR 5740 - Incentives: Implements "Mining” - diverting a portion of Fees to proposers:
github.com/algorand/go-algorand /pull /5740

* PR 5757 - Incentives: Suspend “absentee” accounts that don’t propose:
github.com/algorand/go-algorand /pull /5757

* PR 5799 - Incentives: Heartbeat to keep an unlucky node online:
github.com/algorand /go-algorand /pull /5799

Barring unforeseen issues, we expect production (mainnet) roll-out of consensus incentives
by mid 2024.

13

https://github.com/algorand/go-algorand/pull/5740
https://github.com/algorand/go-algorand/pull/5757
https://github.com/algorand/go-algorand/pull/5799

Glossary

Block-Reward a sum of Algo paid to the participation account of an active Staker, when the
Staker has successfully produced a valid and network-wide accepted block.. 5-7, 9

Blockseed a pseudo-random number generated for each block. Its value is based on various
pieces of information from the blockchain. It is used as part of the sortition algorithm.. 9

Fee Sink an account, (Y76M3MSY6DKBRHBL7C3NNDXGS5IIMQVQVUAB6MP4XEMMGVE2QWNPL226CA
which receives all Fees generated by transactions on Algorand mainnet.. 5

Key Registration Transaction a native Algorand transaction type that is used to register an
underlying account’s balance as an active part of the global stake utilised by Consensus..
8,9

Participation Key a secondary private key, associated with the primary private key/account
via signature from the primary private key, imbued with the right to sign messages on
behalf of the associated account during consensus.. 8-10

Pure Proof of Stake a consensus algorithm based on verifiable random functions over elliptic
curves, which provides a mechanism of cryptographic sortition. Naturally incentivises
non-pooled block production.. 4, 11

Spending Key the primary private key for a given Algorand account, confers the right to
spend/move the account’s funds upon the holder.. 8

14

The information provided herein is for informational purposes only and should not be
construed as financial, legal, or investment advice. It is the responsibility of any person who
accesses the information herein to observe all applicable laws and regulations of their relevant
jurisdiction. By proceeding to obtain the information, you are representing and warranting that
all the applicable laws and regulations of your jurisdiction allow you to access such information.
Algorand Foundation and our affiliates make no representations or warranties of any kind,
express or implied, regarding the accuracy, completeness, or reliability of the information
contained herein. Algorand Foundation and our affiliates assume no liability for any losses or
damages that may result from reliance on the information contained in this paper.

This paper may contain forward-looking statements that are subject to risks and uncertainties
that could cause actual results to differ materially from those expressed or implied by such
statements. Forward-looking statements in this paper represent the judgment of Algorand
Foundation and our affiliates as of the date of the paper. We do not undertake any obligation
to update or revise any forward-looking statement to reflect new information or future events.
You should not place undue reliance on forward-looking statements contained in this paper.

For the complete version of this disclaimer, please see our website: www.algorand.foundation/disclaimers

15

https://www.algorand.foundation/disclaimers

	Purpose
	Acknowledgements
	Context
	Solution design
	Incentives from Fees
	Economic considerations
	Payout function
	Frequency
	Game mitigations/Anti-fragility
	Absenteeism
	Pooling
	Modified Clients

	Fees

	Conclusion

